Skip to content

Frogeye Leaf Spot Prevalent in Louisiana Soybean

Frogeye Leaf Spot Prevalent in Louisiana Soybean published on No Comments on Frogeye Leaf Spot Prevalent in Louisiana Soybean

Over the past two weeks, many reports of frogeye leaf spot have been coming in from all soybean growing areas in the state. Overall disease severity in susceptible varieties has been light to moderate. The disease is caused by a fungus, Cercospora sojina, and has the potential to reduce yield by reducing leaf area and causing defoliation. Losses of up to 30% have been reported in the past. The disease may also cause discoloration of seed reducing seed quality. When scouting for frogeye, initial foliar symptoms are dark, water-soaked spots (1 to 5 mm) which later progress to lesions with gray to brown centers and reddish margins. Symptoms will be evident usually around R3, but may appear earlier or later. The disease may progress with more lesions developing, which may coalesce resulting in large necrotic areas on leaves. If infection is severe, frogeye may cause defoliation of soybeans. Young leaves are infected more readily than older leaves, and patterns of varying degrees of disease severity may be observed within canopy levels. Closer examination with a hand lens, or sometimes with the naked eye, will reveal gray to black conidiophores (reproductive structures) within the center of lesions. The disease is spread by windblown or rain-splashed conidia (spores) formed on the conidiophores. Conditions favorable for disease development have been prevalent in our current weather pattern of consistent rainfall, high humidity, and warm temperatures.

Figure 1.  Frogeye leaf spot lesions.
Figure 1. Frogeye leaf spot lesions.
Figure 2.  Coalescing frogeye leaf spot lesions (note the gray coloration near the centers of the lesions).
Figure 2. Coalescing frogeye leaf spot lesions (note the gray coloration near the centers of the lesions).
Figure 3.  A moderate infection of frogeye leaf spot.
Figure 3. A moderate infection of frogeye leaf spot.

Frogeye leaf spot may be managed by a number of methods. The first line of defense is planting a resistant variety and pathogen-free seed. Although our data is limited on varietal susceptibility, in 2013, we were able to rate soybean varieties for frogeye at Dean Lee Research Station in Alexandria. Results of those ratings are posted at: http://www.lsuagcenter.com/MCMS/RelatedFiles/%7B271517B6-5563-4FB9-BF4F-3D211119F027%7D/Dean-Lee-OVT.pdf. Another list from our friends in Mississippi and Tennessee is located at: http://www.mississippi-crops.com/wp-content/uploads/2013/07/2013-soybean-short-list-frogeye-responses.pdf. If your variety of interest was not included in these sources, please contact your seed representative for more information.

Sometimes a fungicide application may be warranted for management of frogeye leaf spot in susceptible varieties when disease severity is moderate to heavy and conditions favor disease development. One important consideration when making application decisions is the fact that strobilurin fungicide resistance is likely in this pathogen population, and has been confirmed in 9 parishes in Louisiana. Even if strobilurin resistance has not been confirmed in your parish and if strobilurin fungicides have been routinely applied in the area, it is likely that the majority of the pathogen population has become resistant. In some cases we have seen reduced efficacy of strobilurin fungicides (Aproach, Evito, Gem, Headline and Quadris) on frogeye leaf spot. In our trials in 2013 and others conducted throughout the United States, we have seen consistent reductions in disease severity when using triazole products such as Domark, Proline, and Topguard. Additionally, pre-mixes containing these triazoles have shown reductions in disease severity. Data is limited for Louisiana, and we have trials at several research stations examining fungicide efficacy for these products as well as many others not listed.

Other considerations should include application coverage as it relates to nozzle type and water volume. Fungicides usually require a minimum of 10 gallons/A by ground and 5 gallons/A by air. Hollow cone or flat fan nozzles are recommended to achieve optimum droplet size. When applying fungicides, rotate chemistries to avoid resistance issues and prolong the usefulness of products. Please do not hesitate to contact LSU AgCenter via your parish agent, specialist, or nearest research station for additional information.

Leave a Reply

Your email address will not be published. Required fields are marked *

Secondary Sidebar