Skip to content

Influence of Nitrogen Fertilizer Rate, Source, and Time of Application on Improving N Efficiency: Clay

Influence of Nitrogen Fertilizer Rate, Source, and Time of Application on Improving N Efficiency: Clay published on No Comments on Influence of Nitrogen Fertilizer Rate, Source, and Time of Application on Improving N Efficiency: Clay

 H.J. “Rick” Mascagni, Jr. and Brenda Tubana

Introduction

            Nitrogen (N) fertilization is a critical cultural practice required for producing maximum corn yield. Many factors, including soil type and crop management systems, determine optimum N rates. Nitrogen is typically knifed-in soon after the crop has emerged and an adequate stand established. Growers often times split N fertilizer applications as part of their management system or, in some cases, due to uncontrollable factors such as excessive or lack of rainfall, may produce soil conditions conducive to N fertilizer loss through denitrification and/or inefficient plant N uptake.  If N is topdressed with a fertilizer containing urea losses may occur due to volatization, which depends to a large extent on climatic and soil factors. If irrigated or rainfall occurs (0.5 inch or greater) within about three days, the fertilize is incorporated and no or minimal volatization losses will occur  Sometimes N applications are delayed or omitted due to inclement weather, while at other times, growers apply the recommended N rate for an expected yield potential. However, as the crop develops yield potential may be higher than expected and additional N may be required. In each of the above situations the question arises, how late can N fertilizer be applied and be effective? The N fertilizer source is also an important component of an effective fertility program. Products are also available such as urease inhibitors (i.e., Agrotain) that minimize urea volatization losses for 7 to 10 days. The objective of this trial was to evaluate N applications, N sources, and an urease inhibitor at different growth stages on a Mississippi River clay soil.

 Procedures

            A field experiment was conducted in 2011 on Sharkey clay at the Northeast Research Station near St. Joseph to evaluate the influence of N rate, timing, and fertilizer source on corn yield and N fertilizer use efficiency (NFUE). Early-season N rates were injected at about the four-leaf growth stage (April 15) as 30-0-0-2 solution (UAN) at N rates of 0, 150, 210, and 240 lb/acre. Urea,with and without Agrotain (3 qts/ton urea), was also hand-broadcast at the rate of 150 lb N/acre at the four-leaf growth stage. For the early-season N rate of 150 lb/acre using 30-0-0-2, a supplemental N rate of 60 lb/acre was applied at about the 12-leaf (May 22) and early-silk growth stages (June 2). Urea was hand-broadcast and UAN was hand-dribbled (to simulate a dribble application) at the 12-leaf and early-silk applications. There were a total of 10 treatments (see Table 2). Pioneer 31P42 was planted on March 23 at 32,000 seed/acre. The trial was furrow irrigated. Cotton was the previous crop and all LSU AgCenter recommended cultural practices were followed.

             The experimental design was a randomized complete block with five replications. Grain yield, yield components, plant N, seed N, NFUE, and remote sensing data were determined. Grain yield was determined by machine harvest from the two middle rows of four-row plots and reported at 15.5% moisture. Yield components, ears/acre, kernel weight (g/100 seed), and ear size (kernels/ear) were also determined from the two middle rows.  Ear-leaf samples were collected at the early-silk growth stage to determine the influence of treatments on the N status of the plant. Seed samples were also collected at harvest. Total N was determined in the plant tissue and harvested seed by the LSU AgCenter’s Soil and Plant Testing Lab. Seed-N uptake (lb N/acre) was calculated by multiplying seed-N concentration by grain yield. NFUE was calculated using the following formula: (seed-N uptake for a given N rate – seed-N uptake for the no-N control) / N rate.   Remote sensing data using a SPAD meter were also determined at the 4- and 12-leaf growth stages. Statistical analyses were performed using the GLM procedure of SAS using a probability level of 0.10.

 Results and Discussion

            Rainfall only totaled 4.9 inches in May and June (Table 1). Furrow irrigations were applied on May 22 and June 2. Across treatments, yields ranged from 15.9 (control) to 197.5 bu/acre (Table 2).

             At early season, urea, urea + Agrotain, and UAN were compared at the 150 lb N/ace rate. Yield responses to treatments had the following rank: UAN > urea + Agrotain > urea (Table 2). There was a 11 day interval between application and rainfall. The late application of 60 lb N/acre increased yields similarly for both the 12-leaf and early-silk applications. There was little difference in yield between sources. Kernel weight was slightly higher for the late compared to early-season applications. When comparing equivalent N rates applied either once early season or split between early season and 12 leaf or early-silk growth stages, yields were similar.

 

Leaf and seed N data are presented in Table 3. Leaf N, seed N, seed N uptake, and NFUE responses to early-season N treatments were highest for UAN compared to urea + Agrotain and urea. There were small differences between the 12-leaf and early-silk N applications for each N trait evaluated. When comparing equivalent N rates, there were small differences between single and split applications for any N trait. Nitrogen fertilizer use efficiency (NFUE) was extremely high, ranging from 0.46 to 0.68. The highest NFUE value occurred for the 150 lb N/a UAN treatment applied early season. SPAD readings reflected trends similar to the yield response (Table 4).

 

Table 1. Rainfall in St. Joseph, 2011.

Month

Rainfall

 

inches

 

 

March

8.3

April

3.0

May

0.9

June

4.0

July

4.4

August

1.3

 

Table 2. Influence of N fertility treatments on corn yield and yield components on Sharkey clay, 2011.

 

 

 

N rate

 

 

 

 

 

 

 

ESN1 rate

ESN

source2

 

12-leaf

Early silk

Late N

source

Total N

applied

 

Yield

 

Ears

Kernel

weight

 

Kernels

lb/a

 

———lb/a——

 

lb/a

bu/a

no/a

g/100

no/ear

 

 

 

 

 

 

 

 

 

 

0

0

15.9

33,350

30.4

42

150

Urea

150

114.3

32,700

33.9

270

150

Urea + Ag

150

124.8

32,050

33.4

295

150

UAN

150

164.8

28,780

36.6

414

 

 

 

 

 

 

 

 

 

 

150

UAN

60

Urea

210

187.8

28,780

37.2

441

150

UAN

60

UAN

210

184.4

30,080

38.2

416

Average

 

 

 

 

 

186.1

29,430

37.7

429

 

 

 

 

 

 

 

 

 

 

150

UAN

60

Urea

210

191.1

28,780

37.2

446

150

UAN

60

UAN

210

186.1

34,010

37.6

402

Average

 

 

 

 

 

188.6

31,400

37.4

424

 

 

 

 

 

 

 

 

 

 

210

UAN

210

183.9

32,050

37.6

400

240

UAN

240

197.5

33,350

34.8

471

 

 

 

 

 

 

 

 

 

 

LSD (0.10):

 

 

 

 

 

10.9

NS3

NS

80

                                         

1ESN, early-season N injected at about 4-leaf growth stage.

2Ag = Agrotain; UAN = 30-0-0-2;

3NS = Non-significant at the 0.10 probability level

Table 3. Influence of N fertility treatments on N nutrition on Sharkey clay, 2011.

 

 

 

N rate

 

 

 

 

 

 

 

ESN1 rate

ESN

source2

 

12-leaf

Early silk

Late N

source

Total N

applied

 

Leaf N

 

Seed N

Seed N

uptake

 

NFUE3

lb/a

 

———lb/a——

 

lb/a

%

%

lb N/a

 

 

 

 

 

 

 

 

 

 

 

0

0

0.98

1.29

11.5

150

Urea

150

1.47

1.24

79.8

0.46

150

Urea + Ag

150

1.60

1.20

84.1

0.48

150

UAN

150

2.50

1.23

114.1

0.68

 

 

 

 

 

 

 

 

 

 

150

UAN

60

Urea

210

2.60

1.27

133.7

0.58

150

UAN

60

UAN

210

2.60

1.32

136.0

0.59

Average

 

 

 

 

 

2.60

1.30

134.9

0.59

 

 

 

 

 

 

 

 

 

 

150

UAN

60

Urea

210

1.31

140.3

0.62

150

UAN

60

UAN

210

1.34

139.5

0.61

Average

 

 

 

 

 

1.33

139.9

0.62

 

 

 

 

 

 

 

 

 

 

210

UAN

210

2.57

1.30

134.3

0.59

240

UAN

240

2.65

1.36

149.9

0.58

 

 

 

 

 

 

 

 

 

 

LSD (0.10):

 

 

 

 

 

0.17

0.05

9.1

0.05

                                         

1ESN, early-season N injected at about 4-leaf growth stage.

2Ag = Agrotain; UAN = 30-0-0-2;

3NFUE = N fertilizer use efficiency

Table 4. Influence of N fertility treatments on SPAD readings at the early season and

12-leaf growth stages on Sharkey clay, 2011.

 

 

 

N Fertilizer Source

 

N rate1

Total N

Urea

Urea + Agrotain

UAN

lb/a

lb/a

———————–SPAD readings—————————
              

 

 

 

 

 

 

 

Early-Season N Application

 

150

150

39.6

40.3

54.6

210

210

 

 

59.1

240

240

 

 

56.1

 

 

 

 

 

 

 

 

 

 

 

 

 

12-leaf Growth Stage N Application

 

60

210

54.2

 

56.7

 

 

 

 

 

LSD (0.10):

 

 

3.8

 

                     

 

Corn Insecticide Seed Treatment Options

Corn Insecticide Seed Treatment Options published on No Comments on Corn Insecticide Seed Treatment Options

Sebe Brown, Extension Entomologist

 Selecting corn seed treatments can be a challenging and expensive undertaking faced by many producers across Louisiana.  Corn seed treatments target three spectrums of pests: nematodes, fungal seedling diseases and insects.  This article will address insecticide seed treatment options available for corn.

Insecticide seed treatments are usually the main component of a seed treatment package.  Most corn seed available today comes with a base package that includes a fungicide and insecticide.  The insecticide options for seed treatments include Poncho (clothianidin), Cruiser/Cruiser Extreme (thiamethoxam) and Gaucho (Imidacloprid).  All three of these products are neonicotinoid chemistries.  Cruiser and Poncho at the 250 (.25 mg AI/seed) rate are the most common base options available for corn.  These insecticides are a good foundation; however, do not expect these treatments to give you extended protection from all below ground pests. If sugarcane beetles have been a problem in the past, Cruiser at the 250 or 500 rate will not provide adequate control; consider using Poncho at the 500 rate with 1250 providing better protection.  None of these products provide adequate control of cutworms.  Each company offers treatments that provide differing levels of early season insect protection, outlined below are some options available to producers with regards to insecticide seed treatments.

Pioneer’s base insecticide seed treatment package consists of Cruiser 250 with Poncho/Votivo 1250 available upon request.  Votivo is a biological agent that protects against nematodes.

Monsanto’s products including corn, soybeans and cotton fall under the Acceleron treatment umbrella.  Dekalb corn seed comes standard with Poncho 250.  Producers also have the option to upgrade to Poncho/Votivo, with Poncho applied at the 500 rate.

Agrisure, Golden Harvest and Garst have a base package with a fungicide and Cruiser 250.  Avicta complete corn is also available; this includes Cruiser 500, fungicide, and nematode protection.

Another option is to buy the minimum insecticide treatment available, and have a dealer treat the seed downstream.

Avipel was re-issued a section 18 for field and sweet corn seed in Louisiana.  The exemption is effective from February 24, 2012 through February 24, 2013.  Avipel can only be applied at the dealer and is used as a humane bird repellent.

It is important to note that below ground Bt traits available for western corn rootworm will not work on our strain of root worm in Louisiana.  Look at using in-furrow applications of Counter (organophosphate) or Force (pyrethroid) to help keep rootworms under control.  If an ALS herbicide was used in burndown applications or is anticipated, organophosphate insecticides should not be used.

Insecticide seed treatments are a valuable tool that allows producers a head start on early season protection from a variety of pests.  Minimizing damage below ground will help get this year’s corn crop off to a promising start.

Current Weather Conditions May Affect Burndown Strategies

Current Weather Conditions May Affect Burndown Strategies published on No Comments on Current Weather Conditions May Affect Burndown Strategies

From: Daniel Stephenson, Ph.D (Weed Scientist), Sebe Brown (Extension Entomologist) and John Kruse, Ph.D. (Cotton and Feedgrain Specialist)

Historically, many corn producers in Louisiana desire to plant corn in February. LSU AgCenter weed scientists and entomologists suggest burndown applications occur 4 to 6 weeks prior to planting to prevent competition from weeds and to remove vegetation that may be infested with insect pests – collectively known as “breaking the green bridge”.

Fields intended for corn should have already received a burndown application; however, weather conditions during January and early February may have prevented herbicide applications. As an example, 14.5 inches of rain were recorded at the Dean Lee Research and Extension Center in Alexandria since January 1.

The wet fields prevented ground application of burndown herbicides. Also, there were only a few days since January 1 that an airplane was able to make these applications due to wind conditions. As a consequence, Louisiana producers may be faced with weedy fields that are intended for corn.

A failure to “start clean” can greatly influence corn yields. Data have shown that corn determines its leaf orientation very soon after emergence. Leaf orientation perpendicular to the planted row is desired for maximum light interception, which influences growth and yield potential. If a spiking corn plant perceives any competition from an adjacent winter weed, the leaf orientation will be altered, thus potentially reducing that corn plant’s ability to intercept enough light for maximum yield. Therefore, planting into a weed-free field is very important.

Focus on Weed Control

Traditionally, a burndown application of glyphosate plus 2,4-D has been the standard protocol. This treatment usually provides good to excellent control of many winter/spring annual weeds common in Louisiana fields.

When applied 4 to 6 weeks prior to planting, a producer has time to evaluate the efficacy of glyphosate plus 2,4-D and decide if an additional herbicide treatment is needed prior to planting. If a producer is prevented from applying the burndown application in a timely manner, then weed competition and insect pressure may be an issue for emerging corn. Henbit in particular may be a refuge for cutworms and spider mites.

If a field scheduled for corn has received a burndown application, then these fields need to be evaluated to determine if corn will be planted into a “clean” field.

If the weather has prevented a burndown application and a producer intends to plant corn within the next few weeks, several factors must be considered.

The first issue is the 2,4-D plant-back restriction, which is 7 days for corn. If you are within this window, then you should not apply 2,4-D, to prevent herbicide injury to the corn. Second, maximum efficacy of glyphosate will not be observed until 21 to 28 days after application, so glyphosate applied 7 to 10 days before planting may not provide acceptable weed control and may allow insect populations to survive.

If a producer is within 7 to 14 days of planting corn, he/she should consider the following burndown treatments:

  • Gramoxone SL at 1.5 qt/A plus atrazine at 1 lb ai/A plus 0.25% v/v nonionic surfactant.
  • Gramoxone SL at 1 qt/A plus Leadoff at 1.5 oz/A plus 0.25% v/v nonionic surfactant.

Gramoxone SL will provide control of existing weeds, but coverage is essential. Therefore, a minimum of 12 gallons of water per acre and flat-fan nozzles should be utilized to maximize coverage. Also, Gramoxone SL efficacy can be increased when the air temperature is high and cloud cover is minimal.

Atrazine or Leadoff will assist Gramoxone SL with control by providing residual activity on winter/spring weeds during the first few weeks after corn emergence – if beds are not disturbed at planting. However, if an organophosphate insecticide will be applied in-furrow when planting corn, then Leadoff cannot be applied or injury will occur.

Focus on Insect Control

At-plant bands or post-emergence pyrethroid applications can be used to control cutworms; however, the infestation needs to be detected early to minimize stand loss. Moist soils will help incorporate the application to improve efficacy on any cutworms that may be located below the surface.

Foliar insecticide applications can be applied in bands behind the planter in reduced tillage fields. At planting soil insecticides such as Lorsban 15G can be t-banded with corn to help control cutworms pre-emergence. Lorsban should not be planted in furrow due to possible phytotoxicity. It is important to note that the use of ALS inhibiting herbicides with organophosphates such as Counter and Lorsban have the ability to cause significant crop injury.

If producers used Leadoff in their burn down strategy then Counter should not be used at all, to prevent any negative effects between the two chemicals. Lorsban has greater crop safety than Counter when used in conjunction with ALS inhibiting herbicides.

Force 3G can also be used at plant to help protect against cutworms. Force 3G is a pyrethroid insecticide and the ALS interaction is not a factor. Counter is not effective for control of cutworms but useful for rootworms.

Planting corn into a weed-free field is a must to maximize yield. Regardless of when you apply a burndown treatment, a producer must strive to “start clean”.