Skip to content
Western Flower Thrips Photo courtesy of UC IPM and Jack Kelly Clark

Early Season Thrips Management Strategies in Cotton

Early Season Thrips Management Strategies in Cotton published on No Comments on Early Season Thrips Management Strategies in Cotton

By Sebe Brown, Dr. David Kerns, Dr. Rogers Leonard – LSU AgCenter Entomologists

Thrips are annual pests of cotton in Louisiana. Damage by these insects cause stunted growth, delayed plant maturity and plant death under heavy infestations.  Cotton is most susceptible to thrips from emergence to the 4 true leaf stage.  Once cotton has reached the 4 true leaf stage, root differentiation has increased, terminal bud growth is accelerated and plants become less susceptible to injury.

The most common thrips found in Louisiana cotton are tobacco thrips, eastern flower thrips, onion thrips and western flower thrips.  These insects overwinter on a variety of weed hosts.  Planting seasons with windy conditions can have considerable influence on the severity of thrips populations in early cotton.  Thrips are typically weak flyers and wind helps to distribute infestations across fields.

Cotton seedlings that experience cool, wet soils develop very slowly and remain susceptible to thrips injury much longer than cotton planted in a warmer, more optimum, environment.  This year has been very warm and wet with considerable alternate hosts around cotton fields to produce sources of thrips infestations.  With the loss of Temik for the 2012 growing season, insecticide seed treatments (ISTs) and over-sprays will be critically important for controlling thrips on seedling cotton.

Cotton seed comes with a variety of seed treatment options that may either be purchased through a seed company or applied by a dealer downstream.  Outlined below are a few of my thoughts with regards to insecticide seed treatment packages on cotton seed.

Dow’s Phytogen seed comes with a base package of thiamethoxam (Cruiser), with Avicta Complete Cotton available upon request.  Avicta Complete Cotton includes Cruiser for the IST, multiple fungicides and abamectin for nematode control.  Information on Phytogen seed treatment options can be found here.

http://www.dowagro.com/phytogen/varieties/seed_treatments.htm

Monsanto’s Deltapine cotton seed comes with a combination of products that fall within the Acceleron treatment umbrella. The base package in cotton includes imidacloprid (Gaucho) and several fungicides.  However there are several options within the Accereleron brand.  Be sure that your seed is treated with what was ordered.  These options are upgrades to Avicta Duo Cotton with Cruiser for insect control, several fungicides for disease control and abamectin for nematodes.  Beware: the Acceleron seed treatment label in other crops may contain other products.  More information on Acceleron seed treatment options can be found here.

https://www.acceleronsts.com/Cotton/Pages/Cotton.aspx

Bayer’s Stoneville/Fibermax cotton seed comes with a base package that includes Gaucho for insect control and thiodicarb for nematodes that falls under the Aeris treatment umbrella.  Producers also have the option to upgrade to Poncho/Votivo with clothianidin (Poncho) for insects and Bacillus firmus (Votivo) for nematodes. More information on Aeris seed treatment options can be found here.

http://www.bayercropscience.us/products/seed-treatments/aeris/

Western Flower Thrips Photo courtesy of UC IPM and Jack Kelly Clark
Western Flower Thrips Photo courtesy of UC IPM and Jack Kelly Clark

Another option is to buy the minimum insecticide treatment available, and have a dealer apply additional insecticides downstream after the seed is purchased.

IST’s offer limited early season protection from thrips. Effective residual efficacy usually offers 10-14 days of control after plants emerge. Unsatisfactory residual control can occur with these treatments and cotton should be frequently scouted for thrips until the four leaf stage and when cotton plants are actively growing.

During 2011, western flower thrips were a problem in many Louisiana cotton fields. Western flower thrips can be difficult to control with standard applications of acephate, dimethoate, bidrin, etc.  Producers also risk flaring spider mites and cotton aphids with repeated applications of broad-spectrum insecticides. Recent research conducted by the LSU AgCenter demonstrated satisfactory control of a complex of species including western flower thrips with Tracer and Radiant at 2 and 7 days after treatment.

The use of a nonionic surfactant with these insecticides can help increase efficacy against thrips. Rescue applications of foliar insecticides should be applied early in cotton development with applications at the 1-2 true leaf stage yielding significantly greater lint per acre than treatments applied at the 3-4 true leaf stage.  Do not wait for thrips treatment in an attempt to time an overtop herbicide application.

Insecticide seed treatment options get producers off to a good start when it comes to insect pest management in cotton. However, these treatments should not be relied upon for sole control of all early season pests. IST’s are one of the best management practices (BMP’s) recommended by the LSU AgCenter for cotton IPM.

For more information concerning insect pest management, contact your local LSU AgCenter parish agent, LSU AgCenter specialist, or Louisiana independent agricultural consultant.

Thrips-injured cotton. Photo: LSU AgCenter
Thrips-injured cotton. Photo: LSU AgCenter
Cotton without thrips injury. Photo: LSU AgCenter
Cotton without thrips injury. Photo: LSU AgCenterThrips-injured cotton. Photo: LSU AgCenter

Soybeans Planting Underway Throughout Louisiana

Soybeans Planting Underway Throughout Louisiana published on No Comments on Soybeans Planting Underway Throughout Louisiana

by Dr. Ronnie Levy, Soybean Specialist

Louisiana is projected to plant a little over one million acres of soybeans in 2012.    Strong exports and demand for soybeans continue and soybean acres may increase throughout the planting season.  The acres planted will probably be limited by weather.  If the weather is favorable, we could see up to 1.1 million acres of soybeans planted.  Each year seems to present different problems for production, hopefully this will be the year without one. 

 In Louisiana approximately 60% of the acres are planted to maturity group IV’s and 35% of the acres to maturity group V’s.  The remaining 5% is planted to maturity group III’s and VI’s.  Then trend has been toward maturity group IV’s.

 Soybean planting got started early this year with a few acres being planted in late March.  As planting continues to progress, the question always arises – What is the optimum plant population?

 Too dense a plant population reduces yields, encourages diseases and lodging and increases seed cost.  When calibrating planters, use seed per foot as your guide rather than pounds of seed per acre.  In the following table, the estimated pounds per acre should be used only to calculate how much seed to buy.  Because of varietal difference in seed size, as well as seasonal variation within lots of the same variety, planting rates can be misleading if expressed in pounds per acre.  The following rates are recommended:

 

Row Width

Seed/

Plants/

Estimated

Population

(Inches)

Row Foot

Row Foot

lbs.Acre

in 1000s

36-40

8-9

6-8

35

78-104

30-32

6-7

4-5

40

78-104

20-24

5-6

4-5

45

104-130

7-10

4-5

3

70

104-130

Broadcast

5-6/sq.ft.

3/sq.ft.

75-90

150

Late

 

4/sq.ft.

80-100

200

Planting

 When planting is delayed until June 15 or later, the amount of vegetative growth that the plant produces becomes more critical.  It is important to choose varieties that grow rapidly in a short time.  When blooming starts, most vegetative growth ceases in determinate varieties.  When planting late, seeding rates should be increased to compensate for reduced vegetative growth.

 

Wheat Insect Update

Wheat Insect Update published on No Comments on Wheat Insect Update

by Sebe Brown, Extension Entomologist

All, I have been seeing more instances of true armyworms infesting wheat in the North Louisiana.  These include wheat plots at St. Joe and Winnsboro at various stages of growth.  Our threshold for armyworms is 5 worms per square foot with foliage loss occurring. If armyworms reach the flag leaf and the wheat has not headed an application should be made.  I have also encountered varying levels of stink bugs (primarily rice stink bug) in wheat. Populations of stink bugs have to be high for damage to occur and our threshold is 10% infested wheat heads in the milk stage and 25% infested heads in the soft dough stage.  Stink bug numbers  will usually be higher around the edges of a field with numbers falling off as you walk further toward the middle. This means you may reach threshold around the edges of a field, but may also be well below threshold 100 feet in.  Applications of pyrethroids can control both of these pests.

Rice stink bug  photo courtesy of Gus Lorenz

Armyworm larvae on wheat heads photo courtesy of Robert Bellm, University of Illinois Extension

 

 

Precision Ag – Variable Rate Applications

Precision Ag – Variable Rate Applications published on No Comments on Precision Ag – Variable Rate Applications

 

by Dennis Burns

ANR Agent Tensas Parish

Recently I was talking to a producer who wanted to learn about making variable rate applications of nitrogen. The first question he asked was: “How much was am I going to save by making the application variable rate?” My response was not what he expected. I said “Don’t look at it as saving money, but as making money.” By matching the optimum nitrogen rate to the corresponding soil/production zone, crop use efficiency is highest and the potential profit from the nitrogen application is maximized.

To make a variable rate nitrogen application, a producer has to define the application zones. This can be based on soil types, Veris Ec soil zones, yield maps, producer knowledge or a combination. The producer’s knowledge of the field along with a yield goal helps determine the nitrogen rate assigned to each zone. The total amount applied to a field with a variable rate application may not be much different than if a producer had gone with a single rate, but by putting the correct rate in the right area the field doesn’t have areas with over or under applications of nutrients.

Soil Sampling is an essential part of variable rate applications, whether it is grid sampling or zone sampling. Each method would benefit from the addition of yield map data to the analysis. Yield maps over several crops and several years can help define the potential yield and profitability of a field. It can also assist with the definition of productivity zones for a field. This is especially obvious when a cropping history is developed over several years.

Variable rate applications of lime, P, K, and other essential nutrients need to be applied in areas defined by the sampling pattern (grid or zone). Variable rate applications of other nutrients is the most cost effective and efficient method for supplying crop needs. Variable rate also allows a producer to match fertility needs to the current crop’s needs. Supplying/maintaining fertility levels enhances the nitrogen efficiency and use by the crop.

The most useful piece of precision ag equipment a producer can own is a yield monitor. A yield monitor gathers the information from the field with which a producer can evaluate how well fertilizers, varieties, etc. performed. Verification strips of a nutrient, nitrogen rate, or another input can be used as a comparison for the rest of the field. Analyzing the results as whole strips and soil/production zones allows a producer to determine the most productive/economical practices to use on their farm.

Precision agriculture, its use, the results, and the incorporation of the practices into a farming operation is a long term process which can enhance the productivity of a farm. For more information or assistance with precision ag applications or yield data on your farm, contact Dennis Burns at 318-267-6709 or R.L. Frazier at 318-267-6714.

 

Wheat Insect Update

Wheat Insect Update published on No Comments on Wheat Insect Update

By Sebe Brown

Extension Entomologist, LSU AgCenter

I have had some reports of armyworms and leaffooted bugs in commercial wheat fields.   True armyworms are primarily an early season (spring) pest with a strong preference for grass crops.  Usually greenish in color with orange strips running down the lateral edges of the body, true armyworms typically feed at night and during overcast days.  During the day, true armyworms can be found under debris and thatch on the soil surface.  In Louisiana infestations normally occur in April, but with the unseasonably warm weather, early infestations from a multitude of pests can be expected.  Scout for this pest during the early morning, late evening or look for larvae on or under the soil surface.  Larvae feed on the foliage of wheat plants from the base and gradually work their way up towards the flag leaf.  Once the wheat has reached milk stage, the plant can tolerate greater levels of defoliation and see little to no yield loss. However, if armyworms begin to feed on or clip the wheat heads substantial yield losses can occur.  Thresholds for Louisiana are 5 or more larvae per square foot with foliage loss occurring.  True armyworms can be controlled with pyrethroids.  If an application for armyworms is justified, use enough carrier to adequately penetrate the wheat canopy.  Applications made during the late morning or afternoon may miss some armyworms in thatch or near the soil surface when direct sunlight and warm temperatures are abundant.

 Leaffooted bugs are similar to stink bugs with regards to their piercing sucking mouth parts and foul odor excreted when they are disturbed.  These insects are characterized by flattened leaf like expansions arising from the hind legs and a white strip running across the central part of the back.  Leaffooted bugs are very flighty and can easily migrate in and out of wheat fields from adjacent weed hosts such as thistle.  Flights of this pest can come from adjacent fields where burndown applications have been recently applied removing their primary host.  Louisiana currently does not have a threshold for these pests and control can be quite difficult with pyrethroids.  This insect is a minor pest of wheat.  However, if your wheat is lodged with them and they have not migrated out of your field within a few days or been blown out by the torrential down pours this spring, a pyrethroid application can be made.  If an application is deemed necessary, a high label rate of a strong pyrethroid should be used.  

 Aphids seem to be less of a problem this season than in previous years. The threshold for green bugs in wheat is 300-800 aphids per linear foot in wheat 6-16 inches in height.  Pyrethroid applications made for other pests such as true armyworms can effectively suppress populations of green bugs.  Many of the fields I have scouted have high numbers of natural enemies. These beneficial insects provide a free service in reducing aphid populations; however, aphids have the ability to outnumber their natural enemies in a short time frame.

 With fungicide applications going out, tank mixing a pyrethroid in while covering ground is an option if insect pests have begun to be a problem.  However, a jar test to assess fungicide/insecticide compatibility may be necessary prior to application.

 For more information concerning insect pest management, contact your local LSU AgCenter parish agent, LSU AgCenter specialist, or your agricultural consultant.

 

 

Wheat Disease Update

Wheat Disease Update published on No Comments on Wheat Disease Update

by Boyd Padgett, Ph.D., Plant Pathologist, LSU AgCenter

I have received a few reports of leaf and stripe rust in commercial fields; however, not at high levels. I have not observed any rust in producer fields in Northeast and Central Louisiana. In my tests around the state (Dean Lee, Red River, Ben Hur, and Macon Ridge), I have observed leaf rust at low levels in my tests located at the Macon Ridge Research Station, at moderate levels at Ben Hur, and stripe rust at low levels in tests at Dean Lee.  These tests are intentionally planted to SUSCEPTIBLE varieties, and are not representative of producer fields planted to resistant varieties. I have also observed powdery mildew in tests located at Ben Hur and the Red River Research Station. This disease is not considered to negatively impact wheat produced in Louisiana. However, if the disease is active (high incidence and severity) and present on the flag leaf prior to heading a fungicide may be justified. I HAVE NOT SEEN THIS SENARIO IN THE PAST 15 YEARS.

 Producer fields: If rust incidence and severity is low (no pustules on the flag and confined to the lower canopy not active), most plants are fully headed (not flowering), and the variety is rust resistant, a fungicide is probably not needed.

Fungicides are justified if the wheat is at flag leaf to early heading and rust is active (spores are easily seen on the lower canopy). The following conditions are necessary for leaf and stripe rust development.

 Stripe rust development is most aggressive when nighttime temperatures are 50 to 65oF in the presence of intermittent rain or dews. However, development can occur when temperatures are near freezing up to 70oF.  Initial infections on seedling wheat may not have the characteristic striping pattern that occurs on more mature plants.  Seedling infections often occur in ‘thumb-sized’ clusters on the leaves, as opposed to a random distribution that occurs with leaf rust.    Infections may appear as linear rows of small yellow to light orange pustules (stripes) on the lower leaves during late winter or early spring. Striped patterns are typical of infections in older pants.  If conditions remain favorable for development, pustules may cover the entire upper leaf surface, as well as portions of the head. A lifecycle (infection to reproduction) can be completed in 7 to 10 days when conditions are optimum for development.

 Leaf rust is usually evident later in the season than stripe rust. This is because the leaf rust pathogen requires warmer temperatures for development than stripe rust. Initial symptoms of leaf rust begin as light yellow spots, usually on the lower foliage. As the disease develops, small pin-point pustules form on the upper leaf surface. Pustules are brick or dark red and occur randomly on the leaf. Similar to stripe rust, pustules can cover the entire leaf surface if conditions remain favorable for development. The disease develops optimally when nighttime temperatures are 50 to 70oF and leavers remain wet for 6 to 8 hours. Similar conditions will favor the development of leaf and glume blotch caused by Stagonospora and Septoria, respectively.

 For more information concerning wheat disease management, contact your local LSU AgCenter county agent, LSU AgCenter specialist, or your agricultural consultant.

Rice insecticide seed treatment considerations for 2012

Rice insecticide seed treatment considerations for 2012 published on No Comments on Rice insecticide seed treatment considerations for 2012

by Natalie Hummel

You can link to Dr. Natalie Hummel’s weblog by going to: http://louisianariceinsects.wordpress.com/

This article was originally published in Louisiana Farm and Ranch, February 2012. I’m reposting it here for your information. This is an important article to read as growers are making their decision about insecticide seed treatments in rice for the 2012 season.

Authors: Natalie Hummel, Associate Professor and Assistant to the Director & Mike Stout, Professor

We have had quite a few inquiries about using a combination of seed treatments, neonicotinoid and Dermacor X-100, in rice. While this practice is legal, using more than one seed treatment is not a practice that we encourage in most circumstances because it results in more insecticide use in rice production than may be necessary.

The rice industry is considering one of these combinations of seed treatments: 1) Dermacor X-100 and CruiserMaxx or 2) Dermacor X-100 and NipsitINSIDE. Typically, a combination of seed treatments is only being considered when planting rice at low seeding rates, primarily because of concerns about the lack of efficacy of CruiserMaxx and NipsitINSIDE at hybrid seeding rates (25 lbs/acre or less) that we have observed in our rice water weevil demonstration trials and small plot trials. The second scenario is where Dermacor X-100 is being used for rice water weevil management and there is a history of stand reduction because of a sporadic pest infestation, usually chinch bugs or armyworms. Combining seed treatments provides a benefit of protecting the crop from injury by some primary and sporadic crop pests.

As the rice industry moves toward a more sustainable crop production profile, the LSU AgCenter strongly encourages rice producers to be good stewards of these insecticide seed treatments. Stewardship of these seed treatments means avoiding the use of insecticides not needed in the crop. For this reason, we discourage the widespread use of a combination of insecticide seed treatments in rice. We instead encourage the person making the seed treatment decision to consider the spectrum of pests that each insecticide can control, the seeding rate, and the history of crop pests in that field.

It is important to remember that each of the seed treatments controls a different group of insects. Dermacor X-100 belongs to a class of insecticides called anthranilic diamides, which target a specific receptor in the muscle of the insect. Dermacor X-100 is registered to control rice water weevil larvae, borers (Mexican rice borer, Rice stalk borer, Sugarcane borer), armyworms and colaspis (2ee registration for suppression). CruiserMaxx and NipsitINSIDE are both neonicotinoid insecticides that affect the nervous system of target insects. CruiserMaxx is labeled to control rice water weevils (larvae and adults), chinch bugs, colaspis and thrips. NipsitINSIDE is labeled to control rice water weevils and colaspis. We do not have data to support the ability of CruiserMaxx or NipsitINSIDE to control chinch bugs, colaspis or thrips in Louisiana, but we anticipate that they will control these pests based on observations from other crops and from rice in other parts of the world. As you study these seed treatments, you can see how a combination of these products can control most of the insects that attack rice in Louisiana. This is part of the reason why there is an inclination toward using a combination of treatments.

Here are criteria for you to consider as you make your seed treatment decision. The first is the seeding rate. This needs to be considered because neonicotinoids don’t always provide good control of rice water weevils at low seeding rates. Dermacor X-100 does provide control of rice water weevils at all seeding rates, but it will not control chinch bugs or thrips. According to the chemical manufacturers, neonicotinoids do control other early season pests including chinch bugs, thrips and colaspis. Another challenge at low seeding rates is that the plant stand is thin and is less tolerant to any insects that reduce the stand by killing seedlings. Insects that can reduce the plant stand count include armyworms, chinch bugs, colaspis and thrips. Borers can infest fields after the plant is at the green ring growth stage and reduce yields by causing deadhearts and whiteheads. Remember that if you put out a combination of seed treatments for a sporadic pest and that pest doesn’t infest your field, then you didn’t need to use a combination of seed treatments. We have data that indicate that rice water weevils infest more than 90% of rice fields in Louisiana. This justifies the use of a seed treatment to control rice water weevils as part of a good IPM program. That is not the case for many of our sporadic pests (armyworms, chinch bugs, colaspis, borers, etc.), which rarely occur at levels that justify treatment. Also, keep in mind that we rarely recommend an insecticide treatment for thrips in rice; usually the damage is not severe enough to require an insecticide.

Here are a couple of situations where a combination of seed treatments may be a good management decision. If you are planting rice at a low seeding rate and you anticipate that you will have an infestation of chinch bugs that would justify a pyrethroid treatment, then a combination of seed treatments would be a good option. In this situation, you would be using Dermacor X-100 to control rice water weevils, borers and armyworms and adding a neonicotinoid to control chinch bugs or thrips. Also, if you are planting rice at conventional seeding rates and you are using a neonicotinoid seed treatment to control rice water weevils and colaspis, but you typically have problems with armyworms or borers, then you may want to apply Dermacor X-100 to your seed.

There is one more thing to consider as you make your seed treatment decisions for the 2012 season. The EPA recently approved a Section 24C (special local need) registration for use of Dermacor X-100 in water-seeded rice. If you are interested in this option, a certified seed treater can provide more information. Remember that you CANNOT use the other seed treatments (CruiserMaxx or NipsitINSIDE) in water-seeded rice. The use of CruiserMaxx and NipsitINSIDE in water-seeded rice is illegal and will not provide control of the target pests.

If you have any questions about the seed treatment options registered for use in rice, please contact your local County Agent, or Natalie Hummel (nhummel@agcenter.lsu.edu) for more information.

 

Preparing for the upcoming season using precision ag equipment

Preparing for the upcoming season using precision ag equipment published on No Comments on Preparing for the upcoming season using precision ag equipment

By Dennis Burns & R.L. Frazier

Now is the time to get fields and crops organized for the upcoming season.  When it comes to field names and numbers, consistency is the key to success.  Analyzing yield data or documenting production practices for multiple years makes it virtually a requirement.  Other information such as crops, variety names, chemicals, fertilizers, equipment, etc. can be entered now in preparation for use.  This information can be entered using desktop programs (e.g. APEX, Farm Works, SMS) and copied to the data cards which go in the equipment on the tractors, sprayers, and harvesters.  Or it can be entered directly into the equipment if one of the desktop programs is not available.  Along with these card entries, make a reference notebook with maps and other information that can stay with each tractor, sprayer, harvester, and other equipment.  Time spent now getting data prepared and organized will help keep field operations moving smoothly with fewer glitches to hinder data analysis after the tasks are finished.  For more information or assistance with this or other precision ag applications please contact Dennis Burns (318-267-6709) or R.L. Frazier (318-267-6714) with the LSU AgCenter.

LSU AgCenter Establishes Blog Site for Row Crops Newsletter and Updates

LSU AgCenter Establishes Blog Site for Row Crops Newsletter and Updates published on No Comments on LSU AgCenter Establishes Blog Site for Row Crops Newsletter and Updates

by John S. Kruse 

LSU AgCenter researchers and specialists have created a new avenue for obtaining the Crops Newsletter. Articles published in the Louisiana Crops Newsletter can now also be found at www.louisianacrops.com. Many constituents have expressed their preference for the easy, article-by-article access provided by a website and it is our goal to make science-based information available in forms that are user-friendly. For those that prefer to continue to receive the Newsletter in the current pdf form, rest assured that we will continue to send it out in this form as well. We look forward to serving your needs and hope you enjoy this additional way of accessing the Newsletter.

Influence of Nitrogen Fertilizer Rate, Source, and Time of Application on Improving N Efficiency: Silt Loam

Influence of Nitrogen Fertilizer Rate, Source, and Time of Application on Improving N Efficiency: Silt Loam published on No Comments on Influence of Nitrogen Fertilizer Rate, Source, and Time of Application on Improving N Efficiency: Silt Loam

H.J. “Rick” Mascagni, Jr. and Brenda Tubana

Introduction

            Nitrogen (N) fertilization is a critical cultural practice required for producing maximum corn yield. Many factors, including soil type and crop management systems, determine optimum N rates. Nitrogen is typically knifed-in soon after the crop has emerged and an adequate stand established. Growers often times split N fertilizer applications as part of their management system or, in some cases, due to uncontrollable factors such as excessive or lack of rainfall, may produce soil conditions conducive to N fertilizer loss through denitrification and/or inefficient plant N uptake.  If N is topdressed with a fertilizer containing urea losses may occur due to volatization, which depends to a large extent on climatic and soil factors. If irrigated or rainfall occurs (0.5 inch or greater) within about three days, the fertilize is incorporated and no or minimal volatization losses will occur  Sometimes N applications are delayed or omitted due to inclement weather, while at other times, growers apply the recommended N rate for an expected yield potential. However, as the crop develops yield potential may be higher than expected and additional N may be required. In each of the above situations the question arises, how late can N fertilizer be applied and be effective? The fertilizer N source is also an important component of an effective fertility program. Products are also available such as urease inhibitors (i.e., Agrotain) that minimize urea volatization losses for 7 to 10 days. The objective of this trial was to evaluate N applications, N sources, and an urease inhibitor at different growth stages on a Mississippi River silt loam.

 Procedures

            A field experiment was conducted in 2011 on Commerce silt loam at the Northeast Research Station near St. Joseph to evaluate the influence of N rate, timing, and fertilizer source on corn yield and N fertilizer use efficiency (NFUE). Early-season N rates were injected at about the 3-leaf growth stage (April 16) as 30-0-0-2 solution (UAN) at N rates of 0, 120, 150, 180, and 210 lb N/acre. Urea, with and without Agrotain (3 qts/ton urea), was also hand-broadcast at the rate of 120 lb N/acre at the 3-leaf growth stage. For the early-season N rate of 120 lb/acre using 30-0-0-2, supplemental N rates of 30 and 60 lb/acre were applied at about the 12-leaf (May 23) and early-silk growth stages (June 7). Urea, with and without Agrotain, was hand-broadcast  and 30-0-0-2, with and without Agrotain, was hand-dribbled (to simulate a dribble application) at the 12-leaf and early-silk applications. There were a total of 23 treatments (see Table 2). REV® 28HR20 was planted on March 24 at 32,000 seed/acre. Cotton was the previous crop and all LSU AgCenter recommended cultural practices were followed.

             The experimental design was a randomized complete block with four replications. Grain yield, yield components, plant N, seed N, NFUE, and remote sensing data were determined. Grain yield was determined by machine harvest from the two middle rows of four-row plots and reported at 15.5% moisture. Yield components, seed weight (g/100 seed) and ear size (seed/ear) were also determined from the two middle rows.  Ear-leaf samples were collected at the early- silk growth stage to determine the influence of treatments on the N status of the plant. Seed samples were also collected at harvest. Total N was determined in the plant tissue and harvested seed by the LSU AgCenter’s Soil and Plant Testing Lab. Seed-N uptake (lb N/acre) was calculated by multiplying seed-N concentration by grain yield. NFUE was calculated using the following formula: (seed-N uptake for a given N rate – seed-N uptake for the no-N control) / N rate.   Remote sensing data using a SPAD meter were also determined at the 3- and 12-leaf growth stages. Statistical analyses were performed using the GLM procedure of SAS using a probability level of 0.10.

 Results and Discussion

            Rainfall was extremely low in May with a only a total of 4.9 inches in May and June in this dryland trial (Table 1). However, overall yields were extremely good averaging over 150 bu/acre (Table 2).

             At early-season, urea, urea + Agrotain, and UAN were compared at the 120 lb N/acre rate. Yield response had the following rank: UAN = urea + Agrotain > urea (Table 2). Evidently, there was some N loss due to volatization for the urea fertilizer. There was a 10 day interval between application and the first rainfall event. For the late N applications at the 12-leaf growth stage and early silk, both the 30 and 60 lb N/acre rates increased yields across sources. Yields tended to be a little higher for the early silk compared to 12-leaf applications. There were 11 and 2 day intervals between application and rainfall for the 12-leaf and early-silk applications, respectively. There was a yield response to urea + Agrotain for the 30 lb N/acre late application at the 12-leaf growth stage. When comparing equivalent N rates applied either once early season or split between early season and 12 leaf or early-silk growth stages, yields were similar. The treatment influence on kernel weight and ear size (kernel number) are shown in Table 2.

 Plant and seed N data are presented in Table 3. Leaf N, seed N, seed N uptake, and NFUE had the following rank for the early-season N treatments: UAN>urea+Agrotain>urea. Similar to yield responses, there were only small differences between the 12-leaf and early-silk late N applications for each N trait. Nitrogen fertilizer use efficiency (NFUE) was extremely high, ranging from 0.36 to 0.78 (Table 3). There were no differences in NFUE between the single and split applications, when comparing equivalent N rates. SPAD readings reflected treatment effects similar to yield responses (Table 4).

 

Table 1. Rainfall in St. Joseph, 2011.

Month

Rainfall

 

inches

 

 

March

8.3

April

3.0

May

0.9

June

4.0

July

4.4

August

1.3

 

Table 2. Influence of N fertility treatments on corn yield and yield components on Commerce silt loam, 2011.

 

 

 

N rate

 

 

 

 

 

 

 

ESN1 rate

ESN

source2

 

12-leaf

Early silk

Late N

source

Total N

applied

 

Yield

 

Ears

Kernel

weight

 

Kernels

lb/a

 

———lb/a——

 

lb/a

bu/a

no/a

g/100

no/ear

 

 

 

 

 

 

 

 

 

 

0

0

39.6

31,390

31.7

124

120

Urea

120

116.7

32,700

32.0

293

120

Urea + Ag

120

141.9

32,700

33.4

329

120

UAN

120

145.8

33,350

34.4

365

 

 

 

 

 

 

 

 

 

 

120

UAN

30

Urea

150

160.7

33,350

34.7

327

120

UAN

30

Urea+Ag

150

169.4

32,700

34.1

386

120

UAN

30

UAN

150

165.8

30,740

34.7

423

120

UAN

30

UAN+Ag

150

165.6

32,700

36.0

385

Average

 

 

 

 

165.4

32,370

34.9

380

 

 

 

 

 

 

 

 

 

 

120

UAN

60

Urea

180

170.0

32,050

35.2

386

120

UAN

60

Urea+Ag

180

176.8

34,010

36.2

397

120

UAN

60

UAN

180

160.3

33,350

35.2

357

120

UAN

60

UAN+Ag

180

166.2

32,700

35.1

378

Average

 

 

 

 

168.3

33,030

35.4

380

 

 

 

 

 

 

 

 

 

 

120

UAN

30

Urea

150

168.5

34,660

35.1

361

120

UAN

30

Urea+Ag

150

151.8

33,350

34.9

368

120

UAN

30

UAN

150

168.7

32,700

35.7

389

120

UAN

30

UAN+Ag

150

168.0

33,350

34.3

386

Average

 

 

 

 

164.3

33,520

35.0

376

 

 

 

 

 

 

 

 

 

 

120

UAN

60

Urea

180

177.0

32,700

35.6

403

120

UAN

60

Urea+Ag

180

172.8

34,010

34.4

383

120

UAN

60

UAN

180

166.5

33,350

34.1

381

120

UAN

60

UAN+Ag

180

170.0

32,700

35.1

393

Average

 

 

 

 

171.6

33,190

34.8

390

 

 

 

 

 

 

 

 

 

 

150

UAN

150

166.2

34,010

34.3

374

180

UAN

180

169.8

30,740

33.9

432

210

UAN

210

178.8

34,010

36.7

380

 

 

 

 

 

 

 

 

 

 

LSD (0.10):

 

 

 

 

14.7

NS3

2.7

53

                                                 

1ESN, early-season N injected at about 3-leaf growth stage.

2Ag = Agrotain; UAN = 30-0-0-2;

3NS = Non-significant at the 0.10 probability level

 

Table 3. Influence of N fertility treatments on N nutrition of corn on Commerce silt loam, 2011.

 

 

 

N rate

 

 

 

 

 

 

ESN1 rate

ESN

source2

 

12-leaf

Early silk

Late N

source

Total N

applied

 

Leaf N

 

Seed N

Seed N

uptake

 

NFUE3

lb/a

 

———lb/a——

 

lb/a

%

%

lb N/a

 

 

 

 

 

 

 

 

 

 

 

0

0

1.18

1.28

39.7

120

Urea

120

1.57

1.22

82.0

0.36

120

Urea + Ag

120

1.86

1.38

107.9

0.57

120

UAN

120

2.24

1.43

133.0

0.78

 

 

 

 

 

 

 

 

 

 

120

UAN

30

Urea

150

2.30

1.40

116.9

0.52

120

UAN

30

Urea+Ag

150

2.23

1.43

135.0

0.64

120

UAN

30

UAN

150

2.26

1.44

141.7

0.68

120

UAN

30

UAN+Ag

150

2.32

1.45

143.5

0.69

Average

 

 

 

 

2.28

1.43

134.3

0.63

 

 

 

 

 

 

 

 

 

 

120

UAN

60

Urea

180

2.32

1.50

142.4

0.57

120

UAN

60

Urea+Ag

180

2.27

1.55

166.4

0.71

120

UAN

60

UAN

180

2.15

1.50

138.1

0.55

120

UAN

60

UAN+Ag

180

2.36

1.52

145.4

0.59

Average

 

 

 

 

2.28

1.52

148.1

0.61

 
 

 

 

 

 

 

 

 

 

 

 
120

UAN

30

Urea

150

1.40

135.0

0.64

 
120

UAN

30

Urea+Ag

150

1.44

136.1

0.64

 
120

UAN

30

UAN

150

1.48

146.9

0.72

 
120

UAN

30

UAN+Ag

150

1.48

143.7

0.70

 
Average

 

 

 

 

1.45

140.4

0.68

 
 

 

 

 

 

 

 

 

 

 

 
120

UAN

60

Urea

180

1.47

151.7

0.63

 
120

UAN

60

Urea+Ag

180

1.53

149.8

0.61

 
120

UAN

60

UAN

180

1.47

139.1

0.56

 
120

UAN

60

UAN+Ag

180

1.45

142.4

0.58

 
Average

 

 

 

 

1.48

145.8

0.60

 
 

 

 

 

 

 

 

 

 

 

 
150

UAN

150

2.28

1.45

139.3

0.67

 
180

UAN

180

2.50

1.49

146.9

0.60

 
210

UAN

210

2.48

1.48

154.4

0.55

 
 

 

 

 

 

 

 

 

 

 

 
LSD (0.10):

 

 

 

 

 

0.16

0.10

21.7

0.14

 
                                                   

1ESN, early-season N injected at about 3-leaf growth stage.

2Ag = Agrotain; UAN = 30-0-0-2;

3NFUE = N fertilizer use efficiency

Table 4. Influence of N fertility treatments on SPAD readings taken early season and at 12-leaf growth stage on Commerce silt loam, 2011.

 

 

 

N Fertilizer Source

 

 

 N rate1

 

Total N

 

Urea

Urea + Agrotain

 

UAN2

UAN + Agrotain

 

Average

lb/acre   ———————————SPAD Readings ————————————-
 

 

 

 

 

 

 

 

 

 

Early-Season N Application

 

 

 

 

 

 

 

 

120

120

38.5

44.0

46.9

43.1

150

150

48.5

48.5

180

180

51.1

51.1

210

210

52.4

52.4

 

 

 

 

 

 

 

 

 

 

     12-leaf Growth Stage N Application

 

 

 

 

 

 

30

150

49.2

46.4

50.0

50.4

49.0

60

180

50.1

52.2

48.4

51.2

50.5

Average

 

49.7

49.3

49.2

50.8

 

 

 

 

 

 

 

 

LSD (0.10):

 

 

 

3.8

 

 

                   

1N rate applied early-season (3-leaf) and 12-leaf growth stage

2UAN = 30-0-0-2 fertilize solution

 

Secondary Sidebar